If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+2x=1300
We move all terms to the left:
x^2+2x-(1300)=0
a = 1; b = 2; c = -1300;
Δ = b2-4ac
Δ = 22-4·1·(-1300)
Δ = 5204
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5204}=\sqrt{4*1301}=\sqrt{4}*\sqrt{1301}=2\sqrt{1301}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{1301}}{2*1}=\frac{-2-2\sqrt{1301}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{1301}}{2*1}=\frac{-2+2\sqrt{1301}}{2} $
| 2(6x+5x+30)=30x | | 5x-3+4x-2=90 | | 16x-18=15x-10 | | 6x-x+4-2.1=-3 | | -6x-157=113+12x | | .4(2x+3)=-0.1(2x+3) | | 〖27〗^x=9^(2x-1)/3^x | | x+12=x-12 | | 1/12=11/6+b | | 4x-5+7x=17 | | 4x+7+2x=9x-12 | | 5x-3+4x-2=180 | | 8x-68x=0 | | -x-67=37+7x | | x/2+17=-35 | | X+2x+85+35=360 | | 11/2x-12=-1 | | 14=2/x | | 0.5(6+6x)=x+2(x+4) | | 0.07(4t+7)=0.28(t-1)+0.77 | | 65=45x75 | | (x+3)(x-)=x2-x-12 | | X+90+4x-10=180 | | 2(x-6)=2x-6x | | -5x-19=10-6x | | 2(-7x-5)=-10 | | 35-30x=-7-14x | | x/2=x-2/3 | | -7=-1-k | | -138-10x=58+4x | | 35-30x(-7-14x)=0 | | -7.8a=-1.56 |